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A method of forming the CI Hamiltonian matrix directly from a list of Bonded Functions and the 
MO-SCF wavefunction is proposed. For small expansions (circa 500 members) this method is definitely 
more efficient than the normal symbolic techniques and can be more efficient than iterative energy 
construction techniques. 
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1. Introduction 

Solution of  the time independent Schr/3dinger equation by the expansion 
technique [ 1] has been the basis of most research in quantum chemistry for many 
years. The technical difficulties associated with complete sets o f  functions have, 
however, imposed quite severe restrictions on the magnitude of Configuration 
Interaction (CI) expansions. In most cases, the expansion has been restricted to 
include only single and double excitations from the ground state valence orbitals. 
The justification of  this restriction has, itself, been the subject of  much research I-2] 
and it has been shown that a major part of the non-relativistic correlation energy 1-3-1 
may be recovered by constructing, in a suitable basis, a CI expansion consisting of 
single and double excitations from the ground state. 

The purpose of  the present work is to construct small CI expansions based on 
MO-SCF orbitals for molecules where MO-SCF I-4] wave functions are readily 
available. We confine ourselves to systems with a closed shell ground state, and 
consider an expansion containing only single and double substitutions in the 
ground-state function. 

The Boys Bonded Function (BF) formalism 1-5, 6-1 was used to construct the 
expansion since Bonded Functions have the correct spin symmetry properties 
while retaining a certain visual simplicity. The closed shell ground state BF for 
an N electron system can be written I-6-1 as: 

B o = d ( l l  ) (22) (33)..- ~-~- (1) 

where (kk) = ~bk(i)q~k(j)(c~(i)~(j) -- c~(j)~(i))/~ 
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~r is the antisymmetriser and ~b i the set of orthonormal basis functions (e.g. 
MOs). It is possible to construct excited BF using the set of virtual orbitals from 
the SCF calculation. If  the occupied MOs are denoted by a, b, c... and the virtual 
MOs by r, s, t... ; a set of "excited" BF can be written down as: 

B A = d (aa) (bb) (rc) (dd)... (single excitation) 
B B = s l  (aa) (bb) (rr) (dd)...(pair replacement) 
Bc = d (aa) (bb) (rs) (dd)...(pair replacement) 
BD = d (aa) (bb) (re) (sd)...(inter pair replacement) 

The BF type B D has a partner function namely 

g E = d (aa) (bb) (rd) (cs). 

since there are two linearly independent functions with S = 0 that may be con- 
structed from the given orbital set. B E and B D are said to be members of the same 
canonical set of functions. Using BF, the total wavefunction T can be written as 

7 j = ~ CKBr (2) 
K 

the resulting secular problem becomes 

~, Cr(HKL-- ErSKL)=O (3) 
K 

and the central problem of the method is the determination of the Hamiltonian 
(H) and Overlap (S) matrices, where 

HKL=(BKI~IBD 

SK L = (BKIBL) x (4) 

5if is the N electron fixed nuclei spinless Hamiltonian operator. 
Unfortunately, the BF do not form a completely orthonormal set of functions. 

It is found that overlap matrix elements between BF belonging to the same 
canonical set are non-zero. In the closed shell case this complication is quite 
trivial, involving only functions like BD and BE and the few non-zero off-diagonal 
overlap elements can be constructed easily (see Appendix 1). 

The H matrix elements, HKL, can be constructed from the general formula 

HKL=FKLZ UKV~(~bp]/~lqSq) + Z V~qLrS(~p~q]l /r12[~r(~s)  (5) 
pq pqrs 

where the Projective Reduction Coefficients U ~  and vpqr~, rL and the integral pre- 
factor FrL are independent of the form of the operator (provided it is spinless). 
The method of deriving them is well established [6]. In the general case their 
determination is quite a time-consuming task. In the closed shell case, however, 
the small number of possible types of BF makes evaluation of the coefficients 
particularly straightforward (see Appendix 1). Once the H and S matrices have 
been computed, it only remains to solve the secular equations (3). The common 
Jacobi or Housholder [-7] methods may be used to perform this task. However, 
since only a" few of the roots of (3) are required, the methods of Nesbet and Shavitt 
[81 are more suitable. 
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2. Direct H Matrix Formation 

There are, broadly speaking, two current methods of approaching the straight- 
forward CI problem. The symbolic method [-9], as the name suggests, constructs 
each element symbolically and then scans the list of MO integrals, satisfying each 
symbolic reference with the appropriate numerical value. The secular problem is 
then solved. In this approach it is the actual construction of H which is extremely 
time-consuming. In the iterative energy construction method [10] explicit refer- 
ence to the H and S matrices is avoided by using an updating formula for the 
vector, expressed directly in terms of the MO integrals. Thus starting from a 
guess at the vector, this procedure ends up with the final vector and energy directly. 
However, in this case the whole integral list must be re-scanned for each iteration 
of the process. Each iteration of the process can be thought of as a step in an 
iterative procedure for solving the secular problem. For large CI problems, these 
methods undoubtedly offer advantages (different for each method) over the 
method proposed here. However, if the expansion length is restricted so that it 
is possible to hold an upper triangle element of the H matrix in the core storage 
of the computer, we believe the present method combines advantages from both 
the previous methods. The method outlined below directly constructs the matrix 
elements for the integrals, thus avoiding the need for a symbolic enumeration 
step, and since the matrix elements themselves are stored there is no need to re- 
process the integral list at every iteration in the solution of  the secular problem. 

The method can be summarized as follows : 

1. Each BF in the expansion is categorized as belonging to one of the types B A, 

B 8 etc. and the substitution position and orbital number are saved. 
2. A label from the list of integral labels is examined and all the matrix elements to 
which the associated integral will contribute are determined. 
3. The prefactor by which to multiply the integral in each contribution to a 
matrix element is uniquely determined for a given matrix element and need not be 
evaluated. The multiplication is performed and the contribution to the appro- 
priate elements accumulated. 
4. Steps (2) and (3) are repeated until all the integral labels have been processed. 
At this stage all the elements of H will have been made up. 

Some examples of precisely what is involved in steps (2) and (3) are given in 
Appendix 2. It will be seen from these examples that the prefactors in (3) are coded 
into the program at step (3) and it is this feature that makes the program really 
efficient. 

It is assumed in the summary given above, that a complete triangle of H may 
be held in core, that is all elements including those that are zero. The programming 
at step (2) would become almost impossibly complex if a complete triangle of H 
were not to be stored, but it is not absolutely necessary that all of  the triangle be 
simultaneously resident in core. However if the triangle is broken up into core- 
blocks, each block requires one scan of the MO-integral list and there is the 
additional check to see if the particular matrix element is in core or not. (Thus if 
there are N core blocks, the total time needed to form the H matrix is more than 
N times that needed if the H matrix was entirely resident in core). Table 1 shows 
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Table 1 

Expansion Triangle a Store b Number  of r 
Length size size Scans at 800K 

200 20,100 300K 1 
400 80,200 772K 1 
600 180,300 1,693K 3 
800 320,400 2,645K 4 

1,000 500,500 4,051K 6 
2,000 2,001,000 15,617K 24 

a Number  of  elements in upper triangle of  H 
matrix 

b Storage needed for one scan of  MO integral 
list 

c The number  of  scans is the next highest in- 
teger found by dividing the number  of  matrix ele- 
ments  available at 800K, into the total number  in the 
triangle. 

Table 2 

N u m b e r  of  Expansion Number  of  CPU time a 
MO' s  in Basis set Length two-electron integrals for H matrix (sec) 

12 350 3,081 38.10 
25 379 52,975 60.91 
25 280 52,975 30.69 
30 286 108,345 40.12 

" I B M  360/195 computer  

how the size of  the BF expansion influences the amount  of core storage needed 
(on an IBM 360/195) to form the upper-triangle of the H matrix. It also shows the 
number of  integral scans that would be necessary for the given problem at a level 
of core fixed at 800K bytes. 

Table 2 shows how the number of MOs and expansion length affect the time 
needed for H matrix formation. The first and last pairs of  entries show that, as the 
number of  two-electron integrals, increases, (for a fixed expansion length) so does 
the time. The centre two entries show that as the expansion length increases, (for 
a fixed number of  two electron integrals) so does the time. 

It is useful tO note, that paged environments do not suit this type of  problem; 
there is no advantage in attempting to spread the H matrix over many pages of  
virtual memory, since the number of  page changes would seriously degrade the 
whole machine performance. The optimum operating conditions can be obtained 
by making maximum use of the available core storage to hold a section of  the H 
matrix and then rescanning the integral list as required to complete the H matrix. 

The solution of the CI secular equations was found using a modified version 
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[11] of the Nesbet diagonalization procedure, taken from the original Polyatom 
CI program [12]. 

The resulting CI vector was then processed to produce the one particle spinless 
density matrix P1 according to 

(P1)rs:  2 CKCLFKL U[(SL (6) 
KL 

Where C~ and CL are CI vector coefficients and FKL and (_r~ t are as in (5) and can 
be easily calculated (see Appendix 1). 

The realization of (6) involves a sub-set of the code for construction of H and 
it may be made extremely efficient, since the CI vector coefficients and the resulting 
elements of P1 can all be held in core storage. P1 may then be processed to yield 
an approximate set of natural orbitals (NO's) [13] in terms of the MO's and these 
may then be represented in terms of the AO's by means of a simple transformation. 
It is therefore possible to retransform the one- and two-electron integrals over the 
AO's to integrals over the approximate NO's and to restart the CI calculation. 
This procedure is essentially the INO method [14]. Transformation of the 
integrals from the AO representation to the MO (or approximate NO) representa- 
tion was performed using the N 5 algorithm method [15]. 

The complete program can be summarized thus: 

1. Construct LCAO-MO-SCF wavefunction [-16] 
2. Transform integrals from AO to MO basis 
3. Construct BF expansion 
4. Evaluate upper triangle of H matrix and S matrix elements 
5. Solve CI Secular equations to give coefficient vector 
6. Form approximate spinless one-particle density matrix 
7. Evaluate set of approximate NO's. 
8. Transform NO's from BO basis to AO basis 
9. If necessary, test convergence of NO's and return to step (3). The convergence 

test was the lowest energy solution [17]. 

3. Program Timings and Preliminary Results 

Two small test calculations were performed using the CI program. The two 
molecules studied were Lithium Hydride (LiH) and Boron Hydride monomer 
(BHa). The rationale behind this choice is in the small number of electrons, which 
permits construction of a reasonably small CI expansion. 

3.1 LiH 

This small molecule has been studied by many methods with varying degrees 
of accuracy [18]. For the present calculation, a basis set consisting of only s-type 
functions has been chosen and thus only the sigma correlation error could be 
studied. The basis set consisted of six functions centred on Lithium atom and 
three on Hydrogen [19]. The interatomic distance was chosen to be 3.00 a.u. 
(1 a .u . -  0.0529 nm). The molecular properties are shown in Table 3. 
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Table 3. LiH Molecular Properties 

ESCF a -- 7.9708 
Eo -- 8.0033 
EHF b -- 7.9873 
ENR b -- 8.0705 
EHF -- Eci 0.0160 
EHF-- ENR~o~ 0.0832 
ErIF - -  ENR~ig~ 0.0541 
Sigma corrln, energy 29.5~ 
Ionisation Potential 8.12 (6.5) c 
Dipole moment (debye) SCF 6.22 

CI 5.50 
expt 5.83 (Ref. 21) 

Energies in a.u. (27.21 eV) 
b Estimate of Hartree fock limit energy (HF) and 

non relativistic energy (ENR) from Ref. 20 (a) 
c Experimental Ionisation potential from Ref. 

20 (b) 

Table 4. Molecular Energy of BH3 a 

EscF -- 26.3621 
Ecl - 26.4387 
EHv -- 26.410 
EnF -- EcI 0.029 
% correln, energy 20.7~ 

a Energy in a.u. 

Table 5. Timings (CPU time in Sec. IBM 
360/195) 

LiH BH 3 

No. of MOs 9 16 
Expansion Length 113 351 
Transformation Time 1.75 6.29 
Expansion Generation 0.12 0.20 
Hmatrix triangle 1.25 6.30 
Secular Solution 1.18 1.90 
Approx. NO formation 0.20 0.44 

3.2 B H  3 

T h e r e  h a v e  r e c e n t l y  b e e n  s o m e  a c c u r a t e  s t u d i e s  o f  t h e  d i m e r i z a t i o n  e n e r g y  o f  

t h i s  m o l e c u l e  1-22]. T h e  p r e s e n t  s t u d y  m a k e s  n o  a t t e m p t  t o  b e t t e r  a n y  p r e v i o u s  

e n e r g y  r e s u l t  a n d  h a s  b e e n  p r e s e n t e d  m e r e l y  fo r  t h e  p u r p o s e  o f  a t i m i n g  tes t .  

T h e  u n c o n t r a c t e d  7s,3p b a s i s  se t  o n  B o r o n  h a s  b e e n  c o n t r a c t e d  [23 ]  to  (4s,2p).  

A (2s)  c o n t r a c t i o n  is Cen t r ed  o n  e a c h  H y d r o g e n  a t o m .  A B - H  b o n d  l e n g t h  o f  
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2.25 a.u. has been adopted. The Hydrogen atom co-ordinates have been taken as 
(0, a, 0) (3a, - � 89  a, 0) and ( _ 3  a, - � 89  a, 0) where a is 2.25 a.u. 

The energy reSults are shown in Table 4. 
The program timings are shown in Table 5. It can be seen that the H matrix 

formation time is the dominant step in the calculation. 

4. Summary 

From the results presented in the tables, it can be seen that once the integral 
transformation has been performed, the time taken to construct H (in core) 
depends more on the expansion length rather than the basis set size. Assuming a 
fixed time to treat each transformed integral, it can be seen that the calculation 
time increases linearly with the number of integrals. However, siflce in the simpli- 
fied case every member of the CI expansion must be examined with every other 
member in order to form the matrix elements, it can be expected that a square 
relationship between the time for the calculation and the expansion length would 
exist. Also, since every possible H matrix element is considered (and there is no 
a priori  method of determining which are zero exactly) the time taken for the 
calculation is largely independent of the sparsity of the H matrix. The results 
show that because of this inherent problem, the method is unsuitable for molecules 
where many H matrix elements are zero by symmetry. In this type of molecule, 
considerable gains can be made using a symbolic technique, where the non-zero 
matrix elements may be discarded at their conception. 

It can be seen that the timings are good for an expansion up to roughly 400 BF. 
However, beyond this number the program efficiency does fall off markedly. 

The figures presented suggest that, given a reasonable transformation time, 
the method should be especially effective in dealing with short sub-sets of expan- 
sions chosen from a longer list, generated from a large orbital basis set. It is also 
clear that selecting a sub-set of BF by either perturbation theory or by the Shavitt 
B K [23] method, can be efficiently handled by the present process, since the 
collection of matrix elements required for such calculations is easily specified and 
computed. 

Apart  from the method's intrinsic capability for  small CI expansions, it is also 
therefore ideally suited to the formation of perturbation approximate NO's in 
a manner similar to that proposed by Hay [25], with perhaps a full CI performed 
in the last cycle of the process. This makes it an ideaI method for obtaining a set 
of starting orbitals, relatively inexpensively, for a bigger CI calculation. 

Even though it would seem extremely difficult to get the method to work 
anything like as efficiently for open-shell systems, because of the complexities of 
specifying the matrix elements required, it should still have considerable utility 
fo r  a broad class of problems. 

Appendix 1 
The general formula for matrix elements between BF has been reported previously [6]. The closed 

shell restriction allows the introduction of several simplifying features. 
Consider the BF 

B~ =~r (22) 53) (64) (A1.1) 
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where the MO's  (1-4) are doubly occupied and the MO's  (5, 6) are virtual in the ground state. The 
canonical set partner to B K is 

BL =s~'(l  1) (22) (54) (36) (A1.2) 

Each BF can be represented by a sum of Slater Determinants .  If there are x repetitions (i.e. identical 
spin-orbitals coupled) then B K can be written as the sum of 2 Im2-x) determinants (where N is the 
number  of  electrons). The number  of  determinant  products which can be formed between the BF is 
therefore 2 ~N-tx+~')). In order to find F, the diagrammatic  method [5, 6] can be used. In the closed 
shell case, only cycles (i.e. closed loops) will appear, i.e. 

/ "  \ \  

. . . .  I " "  \ / N f \ f \ 
1 1 2 2 5 4 6 3 (A1.3) 
I I I r I I I J 
1 1 2 2 5 4 6 3 
\ / \ ~ /  \ / \ / 

Since each cycle gives rise to two spin coupling schemes, the number  of  diagrams which can be con- 
structed from (m - x )  cycles is 2 ("- ~), where m is the total number  o f cycles and x the number  of  identical 
pairs in B K which are linked to identical pairs in B L (i.e. first two cycles in (A1.3)). 

Integrating over electron spin gives rise to a contributing factor of  l /x /2  from each non-identical 
spin coupled pair. The number  of  spin coupled pairs in an N electron BF is N/2. However, x of  these 
are repetitions (i.e. in each diagram there will be ( N - 2 x )  spin coupled pairs, each contributing a factor 
1/~J2). Thus  F is formed from two factors 

1. Number  of  possible diagrams 2 " - ~  
2. Product of  the ( N - 2 x )  spin factors of  l /x /2  in each diagram. 

therefore 

F = 2 (" - ~)(1/x/2) N - 2x = (1/2){N/2 -=) 

If a parity is assigned to each dotted line in (A1.3) (corresponding to a spin interchange), the sign of F 
is given by ( -  1) ' where 

s = i ~ l  1 = - m  (A1.4) 

therefore 

F = ( -  1/2) (N/2- m) 

(A1.4) fails to hold in the case where the BF pair has an orbital mismatch  e.g. 

B K = ~'(11) (22) (63) (44) 
(A1.5) 

B t =..qt(11) (22) (66) (44) 

In (AI.5), B L has an identical pair (66) which does not  appear in B K. In  this ease, one of the 1 / , ~  
factors arising from spin integration will disappear. Generally, if there are J of  these mismatched pairs 
then l /x /2  will appear J times too often. Thus  

F = ( - 1/2) (N/2 - " )x /2  J (A1.6) 

(A1.6) is the general formula in the closed shell case. Since F accounts for the spin integration effects, 
the evaluation of  the BF matrix elements (4) can be reduced to dealing with the spinless one-particle 
functions and (5) reduces to 1 

Hr.L = F [ Z  Q,F(CI}~]C~) + ~ Q,~(<GG] C:C3> + q,~(c, cjl cF~ >)3 (A1.7) 
i i > j  

where F is evaluated by (A1.6) and C~ is the orbital in B L corresponding to C~ in Bg. 

1 In (A1.7) charge density notat ion is used for two-electron integrals. 
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N = Number  of  electrons in BF pair 
M = Number  of cycles 
J = N u m b e r  of pairs where Ci = Cj and C~ ~ Cj or vice versa. 

Q~ = 0 if there exists a vertical pair C r 4= C', where r C j  
Qu = 0 if there exists a vertical pair C, ~ C; where r r i or r C j  
qu = a  code which depends upon the position of the orbital pair Ci and Cj in the cycle, but  is zero if 

c~ = c s or c ;  = c j  

(A1.7) may be simplified depending upon the number  of  non-coincident (or mismatched) pairs e.g. 

1. More than two Non-Coincident Orbitals: both HKL and SKL disappear. 
2. Two Non-Coincident Orbitals: 

HKL = r Q,s[ ( GcIIcsG ) + qH( c,c;I G G )  ] 

SKL = 0 

3. One Non-Coincident Orbital: 

HKL =r[(Cil~lc;)  + E Qu((CiC;ICFj) +qu(CiCj[CF~))] 
J 

SKz = 0  

4. Zero Non-Coincident Orbitals: 

HKL takes the form (A1.7) 

SKL=F 

It is now possible to explain the overlap term between the canonical set pair (A1.1) and (A1.2). It can 
be seen that the cycle pattern (A 1.3) gives F = - 0 . 5  (N = 8, M = 3, J = 0). Also, it follows from (4) that 
there can only be a non  zero overlap term when the orbitals composing the BF pair are identical. 
Thus, diagonal overlap elements have S ,  = 1.0 and the only occurrence of an off-diagonal S u is between 
canonical set members,  where the value of S u must ,  by necessity, be - 0 . 5 ,  otherwise, the BF form an 
or thonormal  set of  functions. 

The factor qq may assume one of three possible values, depending upon the cycle structure. A 
parity is associated with each vertical line in a cycle (by convention, the first has  parity + 1) and alter- 
nates. The values of  qu are shown in Table 6. 

Table 6. qu values (closed shell only) 

P A R I T Y  CYCLE qu 

- 1  
D I F F E R E N T  - �89 

+1 

- 1  +1 
SAME 

+1 - 2  

Example 1 

Linkage Pattern 

1 1 
+11 t - 1  

1 1 

B~ = ~r (11) (22) (66) (44) 

BL = ~r (11) (22) (63) (74) 

, x 2 / x 
2 6 6 

+ 1 1  [ - 1  + 1  ] ] 
2 2 6 3 

\ / ",.,. / 

4 4 
- 1  + 1 1  I 

7 4 
\ / 

- 1  
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Non-Coincident Orbitals are (6, 3) and (4, 7) 

Q1 = 0 (i.e. No one-electron contributions) 
F = 2  (N=8,  M = 4 ,  J = 2 )  

The non-coincidences are in different cycles, therefore q~j can only be -�89 

Example 2 

SKL =O 

HKz=2 [(74163)-- �89 

BK=A(11) (22) (67) (44) 
BL=A( l l )  (22) (63) (74) 

Linkage pattern 

/ \ I \ / "~\  / \ 
1 1 2 2 6 4 4 7 
I [ [ ] +1  [ [ - I  +1  [ [ 
1 1 2 2 6 3 4 7 

- 1  

One Non-coincidence (4, 3) 

r = - x / ~ ( N = 8 ,  M=3,  J = l )  

There may be only one one-electron integral, (413). Using Table 6, the qo values for the various integrals 
are: 

(41131) and (42132); qlj = - �89 (different cycle) 
(64[63) qlj = + 1 (same cycle; Parity - 1 )  
(74163) = - 2  (same cycle; Parity + 1) 

N.B. (44[43) has no contribution from qo since C i = C t and hence qij is zero. 

A p p e n d i x  2 

Since the number of  BF types has been restricted to Ba, B~, B c, B D and Be, it is possible to enu- 
merate all the possible matrix element types which may receive a contribution from a particular type 
of  MO integral. 

In this appendix, only two of the cases will be mentioned; however, every integral type may be 
similarly treated. 

Considering, initially, the one-electron integral type (II) (i.e. both indices the same), this integral 
type can be further classified according to whether I is one of the occupied MOs or virtual MOs in the 
ground state. 

(a) I is an occupied MO label 

This integral type may only contribute to BF matrix elements where there are no noncoincidences. 
If the root function is B 0 =A(11) (22) (33) (44), then the matrix element (Bo[HIBo) has contributions 
from the one-electron integrals (11), (22) etc. up to (44), since F =  1.0 the contribution to the matrix 
element from each of  these integrals is 2.0 times the value of the integral. Other candidates for contri- 
butions are: 

(BA[J~a[BA) ~r (11) (62) (33) (44) (A2.1) 
~g (i 1) (62) (33) (44) 

Since F is 1.0, and if l i s  the position of the substituted orbital then the contribution factor of the integral 
is 1.0, otherwise it is 2.0. 
(In the program, the integral (22), when found is directed into a section of  the programme where the 
list of single excitation BF are scanned. If the excited orbital has replaced the orbital in position "2", 
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then the integral value times 1.0 is added into the diagonal H matrix element (N.B. no-noncoincidences) 
belonging to the BF; otherwise, the integral value times 2.0 is added to the H matrix element). 

Another  candidate for a contribution is the diagonal element between two B type BF viz. : 

(B.I~IB.) ~r (11) (22) (66) (44) (A2.2) 
zar (11) (22) (66) (44) 

If  I is the position of the substituted orbitals, then the integral (I/) does not  contribute to the matrix 
element; otherwise, the contribution factor is 2.0 

(b) I an exci ted orbital 

The pattern closely resembles (a). Considering (A2.1), it can be seen that  the integral (66) will 
make a contribution of 1.0 to the matrix element, all others will not contribute. Also, in (A2.2), the 
only integral of this type to contribute is (66) with a multiplying factor of 2.0. 

Considering the two-electron integrals, the simplest case is when all the indices are identical, i.e. 
(III1). It can be seen that the integral can also be further classified according to the nature of the orbital L 
When 1 is an excited orbital label, only one BF type pair may receive a contribution. (A2.2) is an 
example of this type; the integral (6666) makes a contribution, with a factor 1.0, to this matrix element. 
It is found that the contribution patterns of some of the more complicated integral types (e.g. ( IJKL) ,  
where I and K are excited and J and L root function orbitals) are considerably more involved than 
these simple examples. 
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